Trees to Sequestrate Carbon

Planting trees in any climate is beneficial because there are many benefits of planting trees. Yet, planting trees near the equator "cools" the planet more than trees planted in temperate latitudes. Scientists from the International Panel on Climate Change have focused on tropical trees as the key to solving many global environmental and social challenges caused by climate change. 

What is so special about Rainforest trees?

Tropical trees pull in and store 95% of all tree-based CO2 sequestration on the planet. Generally, the tropics are the areas between 23 degrees North and South of the equator. Planting trees directly recycles carbon, with new growth being the most efficient. Carbon is also sequestered through the undergrowth and roots, which move CO2 into the soil.

The average tropical tree sequesters a minimum of 50 lbs or 22.6 kg of carbon each year. The size and growth rate of each individual tree coupled with its specific density of biomass determines how much CO2 is pulled from the atmosphere and stored.

For example, each tree planted in Costa Rica sequesters one ton of CO2. One ton of CO2 is sequestered per tree over 25 years. Notably, this calculation does not account for the additional CO2 captured in the biomass or fertile topsoil, which is a beneficial byproduct of long term, high-diversity tropical tree planting.

When considering growth rates of tropical trees versus their northern boreal counterparts, the woody biomass of a tropical trees is significantly denser. Indeed, the majority of trees in the tropics are hardwoods with more than 3500 different species in Costa Rica. More than 50% of a tropical tree's woody biomass is sequestered carbon, which is why tropical trees are so important in the fight against global warming and climate change. Remember that tropical trees work 12 months of the year sequestering carbon because there is no dormant winter season. In contrast, boreal trees only work 3 months of the year. Most tropical hardwoods grow to maturity quickly (10 to 20 years), while their boreal counterparts take 80 to 120 years to achieve the same diameter as a softwood. Compare a 5 year old tropical tree to a five year old northern counterpart, and you can easily see the difference in size.

How do trees cool Earth?

Tropical forests store large amounts of carbon dioxide and produce reflective clouds, they are especially good at cooling the planet. Forests also cool the atmosphere because they convert solar energy to water vapor, which increases sky albedo (or reflectivity) via cloud formation. This research comes from Ken Caldeira of Carnegie's Department of Global Ecology.

"Tropical forests are like Earth's air conditioner," says Caldeira. "When it comes to rehabilitating forests to fight global warming, carbon dioxide might be only half of the story; we also have to account for whether they help to reflect sunlight by producing clouds, or help to absorb it by shading snowy tundra." Forests in colder, subpolar latitudes evaporate less water and are less effective at producing clouds. As a result, the main climate effect of these forests is to increase the absorption of sunlight, which can overwhelm the cooling effect of carbon storage.

However, the advantage of forest cover is not so beneficial in the Northern hemisphere. Why? In contrast, forests in snowy areas can warm the Earth, instead of cool it, because their dark canopy absorbs sunlight that would otherwise be reflected back to space by a bright white covering of snow. Those of us living in the tropics can tell you about the cool cloudy days. We can literally feel the action of the forest cover cooling the atmosphere.

Soil in the Rainforest

Tropical trees deposit a huge amount of biomass into the soil in the form of leaves, seeds, branches, and other organic material. Animals and birds, microbes and fungus, epiphytes and bromeliads living in trees add even more organic material to the soil. Once the trees grow over the surrounding vegetation, usually dense cattle grasses, the soil temperature lowers and organic material can begin to deposit into the soil thereby also sequestering carbon. Healthy microbes grow, fungus ferments, and soil fertility is regenerated to become capable of sustaining life.

The top six inches of rainforest soil contains countless nutrients and living systems to support life.

The types of vegetation planted will impact the nutrient quality of soil. If a site has very poor soil small weeds, grasses and plants must be planted to mend soil quality before trees can survive to maturity. This is a natural process called secession. 

Water Cycle

Shaded soils absorb much more rainwater into underground aquifers. How does this work? Imagine a hot skillet. What happens when water hits it? It skittles away and evaporates very quickly leaving nothing but vapor. But when the skillet is cold, the water settles and evaporates much slower. The same phenomenon happens with the process of evaporation when rainwater hits the soil, especially tropical soils that are baking under the equatorial sun. Providing protective tree shade means lower temperatures allowing the water to settle on the ground and be absorbed into the underground reservoir.

The slow evaporation process performed by trees is called "evo-transpiration" and it balances our hydrological cycle of rain and snow, prevents the extreme flooding and drought cycles. This ultimately means that tropical trees fill up your glass of drinking water by making it rain (Living Energies, Victor Shauberger, Temperature Gradients in Soils).

Each tree transpires or recycles over 200 gallons of rainwater each year. By the time the trees reach 20 years old, they have formed a canopy which transpires 20,000 gallons of water per acre per year! That is a big deal with the ongoing drought and flood conditions plaguing our planet due to deforestation and increasingly high temperatures.


Carbon build-up caused by deforestation can also be helped by planting tropical hardwood trees. The ever-growing world demand for wood and forest products is causing enormous destruction of natural forests. Sustainably managed forests provide an alternative supply of tropical hardwoods, easing some of the pressure to cut the primary forests. Less deforestation means less carbon dioxide released. Healthier forests also mean healthier oceans which, in turn, regulate and stabilize our global climate.

Trees and shrubs improve soil and water conservation, store carbon, moderate local climate by providing shade, regulate temperature extremes, increase wildlife habitat and improve the land's capacity to adapt to climate change. These are all benefits forests and shrubs offer the environment and in turn, us.

Intact forests store the carbon dioxide in their wood, branches, leaves and soils which means that trees take the excess carbon dioxide out of the air and stores it back into the natural world especially soils over the long term. When remaining forests are cleared or degraded, there is a net flow of carbon into the atmosphere, which accounts for more than 20% of the world's total carbon emissions. Slowing forest clearing and degradation is the main focus of the UN's methods for encouraging tropical nations to reduce emissions from deforestation.

The Trees For Life Project model of reforestation is part of the solution! More trees for future generations grown long term with community empowerment and education as part of the hands on process means compounding benefits for the environment, the economy, and society. Be part of our mission and be the change to solve tropical deforestation and global warming around the world. 


Win A Trip To Costa Rica

Visit our reforestation project, stay at our nursery and learn how we are rebuilding the rainforest while empowering communities. Learn more.